Local connectivity, local degree conditions, some forbidden induced subgraphs, and cycle extendability
نویسندگان
چکیده
منابع مشابه
Forbidden Subgraphs and Cycle Extendability
A graph G on n vertices is pancyclic if G contains cycles of all lengths`for 3 ` n and G is cycle extendable if for every nonhamiltonian cycle C G there is a cycle C 0 G such that V (C) V (C 0) and jV (C 0) n V (C)j = 1. We prove that (i) every 2-connected K 1;3-free graph is pancyclic, if G is P 5-free and n 6, if G is P 6-free and n 10, or if G is P 7-free, deer-free and n 14, and (ii) every ...
متن کاملDegree conditions and cycle extendability"
A non-Hamiltonian cycle C in a graph G is extendable if there is a cycle C' in G with V(C')= V(C) with one more vertex than C. For any integer k~>0, a cycle C is k-chord extendable if it is extendable to the cycle C' using at most k of the chords of the cycle C. It will be shown that if G is a graph of order n, then 6(G)>3n/4-1 implies that any proper cycle is 0-chord extendable, 6(G)>5n/9 impl...
متن کاملLocal Density In Graphs With Forbidden Subgraphs
A celebrated theorem of Turán asserts that every graph on n vertices with more than r− 1 2r n 2 edges contains a copy of a complete graph Kr+1. In this paper we consider the following more general question. Let G be a Kr+1-free graph of order n and let α be a constant, 0 < α 1. How dense can every induced subgraph of G on αn vertices be? We prove the following local density extension of Turán’s...
متن کاملDegree Powers in Graphs with Forbidden Subgraphs
For every real p > 0 and simple graph G, set f (p,G) = ∑ u∈V (G) d (u) , and let φ (r, p, n) be the maximum of f (p,G) taken over all Kr+1-free graphs G of order n. We prove that, if 0 < p < r, then φ (r, p, n) = f (p, Tr (n)) , where Tr (n) is the r-partite Turan graph of order n. For every p ≥ r + ⌈√ 2r ⌉ and n large, we show that φ (p, n, r) > (1 + ε) f (p, Tr (n)) for some ε = ε (r) > 0. Ou...
متن کاملساختار کلاسهایی از حلقه های z- موضعی و c- موضعی the structure of some classes of z-local and c-local rings
فرض کنیمr یک حلقه تعویض پذیر ویکدار موضعی باشدو(j(r رایکال جیکوبسن r و(z(r مجموعه مقسوم علیه های صفر حلقه r باشد.گوییم r یک حلقه z- موضعی است هرگاه j(r)^2=. .همچنین برای یک حلقه تعویض پذیر r فرض کنیم c یک عنصر ناصفر از (z( r باشد با این خاصیت که cz( r)=0 گوییم حلقه موضعی r یک حلقه c - موضعی است هرگاه و{0 و z(r)^2={cو z(r)^3=0, نیز xz( r)=0 نتیجه دهد که x عضو {c,0 } است. در این پایان نامه ساخ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2017
ISSN: 0012-365X
DOI: 10.1016/j.disc.2016.11.035